32
Biology and Biotechnology of Environmental Stress Tolerance in Plants, Volume 3
Dary, M., Chamber-Pérez, M. A., Palomares, A. J., & Pajuelo, E., (2010). ‘In situ’
phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal
resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177(1–3),
323–330. doi: 10.1016/j.jhazmat.2009.12.035.
Deng, Z., Lixiang, C., Haiwei, H., Xinyu, J., Wenfeng, W., Yang, S., & Renduo, Z., (2011).
Characterization of Cd- and Pb-resistant fungal endophyte Mucor Sp. CBRF59 isolated
from rapes (Brassica chinensis) in a metal-contaminated soil. Journal of Hazardous
Materials, 185(2, 3), 717–724. Elsevier. doi: 10.1016/j.jhazmat.2010.09.078.
Devi, R., Biswaranjan, B., Md Basit, R., Vikas, M., Muhammad, A. A., Ravinder, K.,
Awadhesh, K., et al., (2021). An insight into microbes mediated heavy metal detoxification
in plants: A review. Journal of Soil Science and Plant Nutrition, 41(4), 1–23. doi: 10.1007/
S42729-021-00702-X.
Dhanya, M. S., & Arun, K., (2020). Bioremediation: An eco-friendly cleanup strategy
for polyaromatic hydrocarbons from petroleum industry waste. Bioremediation of
Industrial Waste for Environmental Safety (pp. 399–436). Springer, Singapore. doi:
10.1007/978-981-13-1891-7_18.
Dupont, R. R., (1993). Fundamentals of bioventing applied to fuel contaminated sites.
Environmental Progress, 12(1), 45–53. John Wiley & Sons, Ltd. doi: 10.1002/ep.670120109.
Ekschmitt, K., & Gerard, W. K., (2006). Nematodes as sentinels of heavy metals and organic
toxicants in the soil. Journal of Nematology, 38(1), 13–19. Society of Nematologists. /pmc/
articles/PMC2586444/.
Ferris, H., Venette, R. C., & Scow, K. M., (2004). Soil management to enhance bacterivore
and fungivore nematode populations and their nitrogen mineralization function. Applied
Soil Ecology, 25(1), 19–35. Elsevier. doi: 10.1016/j.apsoil.2003.07.001.
Fu, W., Man, X., Kai, S., Liyan, H., Wei, C., Chuanchao, D., & Yong, J., (2018). Biodegradation
of phenanthrene by endophytic fungus Phomopsis liquidambari in Vitro and in Vivo.
Chemosphere, 203, 160–169. Pergamon. doi: 10.1016/j.chemosphere.2018.03.164.
Fuller, W. H., (1977). Movement of Selected Metals, Asbestos, and Cyanide in Soil:
Applications to Waste Disposal Problems. Municipal Environmental Research Laboratory,
Office of Research.
Gentry, T. J., Christopher, R., & Ian, L. P., (2004). New approaches for bioaugmentation as a
remediation technology. Critical Reviews in Environmental Science and Technology, 34(5),
447–494. Taylor & Francis Group. doi: 10.1080/10643380490452362.
Germaine, K. J., Xuemei, L., Guiomar, G. C., Jill, P. H., David, R., & David, N. D.,
(2006). Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide
2,4-dichlorophenoxyacetic acid. FEMS Microbiology Ecology, 57(2), 302–310. Oxford
Academic. doi: 10.1111/j.1574-6941.2006.00121.x.
Ghosh, M., & Singh, S. P., (2005). A review on phytoremediation of heavy metals and
utilization of its byproducts. Applied Ecology and Environmental Research, 3(1), 1–18.
doi: 10.15666/aeer/0301_001018.
Gomes, G. S., Shiou, P. H., & Juvenil, E. C., (2003). Nematode community, trophic structure
and population fluctuation in soybean fields. Fitopatologia Brasileira, 28(3), 258–266.
SciELO Brasil.
Guimarães, A., Ana, C., Natalie, M. S., Gabriel, A. C., Marla, M., Thiago, P. L., Petzl-Erler, M.
L., Ricardo, L. R. S., et al., (2021). Tracing the distribution of European lactase persistence
genotypes along the Americas. Frontiers in Genetics, 12, 1282. Frontiers Media S.A. doi:
10.3389/fgene.2021.671079.